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ABSTRACT

Finite-element formulations of fluid-structure inter-

action problems based on the use of structural analogies
have been used in a wide variety of applications. The
formulations originate from analogies that can be derived
between the equations of dynamic elastic motion and
generalized forms of the scalar wave equation. The

analogies prescribe that the fluid can be modeled with
structural finite elements to which special material
properties have been assigned. A particular advantage of

this approach is the requirement for only a single degree-
of-freedom at each field grid point to represent the scalar
field variable. In this report the analog formulations
are extended to steady-state plane wave scattering by
infinite cylinders. Details of implementation of the formu-
lations via the NASTRAN computer program are presented
along with calculations of acoustic pressure scattered by
submerged rigid cylinders, empty elastic cylinders, and
elastic cylinders containing fluids bounded by interior
cylinders which may be eccentric with respect to the

outer cylinder. Comparison of numerical and analytic
results for the rigid and empty elastic cases shows

excellent agreement.

ADMINISTRATIVE INFORMATION

The work presented in this report was conducted with funding from Naval Sea

Systems Command (03R11) under Task Area SF43400391, Task 23556, Work Unit 1940-020

and from Naval Sea Systems Command (05H) under Task Area SR0140301, Task 15321, and

Work Unit 1808-010.

INTRODUCTION

It is well known that equations which govern the dynamics of various phenomena

can in certain instances be brought into identical form with one another to yield an

analogy. In the simplest cases, development of the analogy requires merely the

identification of correspondences between variables and parameters of the particular

equations. A textbook example I* of such an analogy is that which exists between

the equation of motion for a mass-spring-damper system, Figure la

+ cy + ky = F cos& t (i)
g o

*A complete listing of references is given on page 51.
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and the equation for current flow in a series-electrical circuit, Figure lb,

LI + RI + I= - E sin wt (2)
C 0

PRIG RESISTANCE R CAPACITANCE C

TRIMPESD
EDISTURBING VOLTA E 1)

WEIGHT. "w FORCE F 0o

", DASHPOT c INDUCTANCE L

COORDINATE-DISPLACEMENT, y, COORDINATE-CURRENT, 1,

OF WEIGHT w FLOWING IN LOOP

Figure la - Mass-Spring-Damper System Figure lb - Series-Electrical Circuit

Figure I - One-Degree-of-Freedom Mechanical and Electrical Systems

These equations can easily be brought into identical form through the following

correspondence of parameters:

w L
* g

c * R

k 1
C

F -i---b--E

0 0

y - I

Somewhat more complex analogies are also well known among the partial differen-

tial equations which govern various field phenomena. The word "complex" indicates

that considerably more effort is required to obtain the identity of form required

for the analogies than was required for the simple systems just illustrated. In a
2

recent paper, G.C. Everstine has given details of the development of such analogies

between the equations of elasticity and the common equations of classical

2



mathematical physics such as the wave equation, Helmholtz's equation, Laplace's

equation, Poisson's equation, the heat equation, telegraph equation, etc. Various

of these analogies have been used with NASTRAN, a standard general-purpose structural

analysis computer code, in such applications as generating fully coupled added mass

matrices, natural frequencies of general fluid-structure systems, steady-state forced

response of fluid-structure systems, shock response of general fluid-structure

systems, free-surface potential flow problems, and torsion of prismatic bars of

arbitrary cross section. References for these applications are given in Everstine's
2

paper.
The work reported here is an extension of these applications of analogies to

steady-state scattering of plane waves from two-dimensional cylindrical shells sub-

merged in an infinite fluid. The particular analogy of interest is one which can be

drawn between the wave equation and the equations of classical linear elasticity

which NASTRAN solves. Two distinct versions of the analogy can be obtained: (1) a

displacement formulation, and (2) a pressure formulation. The latter formulation was

chosen for the present work to take advantage of a comparative reduction by a factor

of two in the number of degrees-of-freedom required in the finite-element model of

the fluid. This report demonotrates the particular form this analogy takes when

applied to steady-state scattering and outlines the details of its implementation

for computing scattered pressures from infinite cylinders.

SCATTERING FROM A RIGID CYLINDER

VELOCITY POTENTIAL FORMULATION

The first set of calculations using the structural analog was made for scattered

pressure from a rigid infinite cylinder ensonified by a steady-state plane wave

front. The physical problem is depicted in Figure 2, which is after a drawing in

the text by Junger and Feit.
3

The analog to be used is based on a velocity potential description of the

acoustic field, and the mathematical formulation of the physical problem is shown

in Figure 3. The radiation condition at infinity is the familiar one for scattering

as well as for radiation: there can only be outward traveling waves.

STRUCTURAL ANALOG FORMULATION

This field problem is described via the analog with elasticity. In the detailed

development for the case of two-dimensional elasticity, 2 the analog prescribes that

3
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Figure 2 -Rigid Shell Scattering an Incident Plane Wave
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Figure 3 -Velocity Potential Formulation of Field Problem for Scattering
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the field be modeled with two-dimensional plane stress finite elements with speci-

ally selected mass and elastic properties. These properties are chosen to bring

about the necessary identity of form between the equations of elasticity which the

structural analysis program solves and the scalar wave equation which governs the

scattered field. Either the x- or y-component of displacement may be chosen to

correspond to the variable j of the wave equation. Here, it is chosen to be the

x-component, giving the correspondence,

U (3)
x

This states that U is the structural analog of the scalar potential 0.

The correspondence betweer U and in turn provides the basis for implementingx

a structural analog of the surface boundary condition as shown in Figure 3. If

;- ican be replaced with U , then it is to be expected that the outward normal derivative
x2

a /3n from the fluid can be replaced by 3U /3n which has been shown2 to equal the
x

surface traction divided by the element shear modulus,

31U T(n)
;n = .e (4)

e

For a structural surface modeled by finite elements, this expression can be repre-

sented2 by

3U F
"x p x A (5)

e

where F is the x-component of the force applied at a grid point on the surface tox

which area A has been assigned. Comparison of Equation (5) with the surface normal

boundary condition (Figure 3) shows that the desired condition is met by setting

F
P - Vn  (6)
e

5



from which F = -PeA V is the required load applied at the particular grid point,
x n

V being the normal velocity outward from the strurtural surface.
n

The final part of the analog formulation concerns representation of the

radiation condition (Figure 3). One method of treating boundary conditions on an

ideally infinite boundary is to represent approximately these conditions on an

artifical boundary placed a finite distance frcm the scattering (or radiating) sur-

face of the structure.

A basis for the analog formulation used here is a boundary condition applied

by Zienkiewicz and Newton4 '5 to the artificial bounding surface in radiation

problems,

(7)
n c 3t

in which p and t denote acoustic pressure and time, respectively. This expression
4

is strictly valid only for plane waves and hence may be applied at distances from

the structural surface at which the outgoing radiating or scattering wave may be

reasonably plane, at least in a certain local sense. The relation between acoustic

pressure and velocity potential is

tp = 
(8)

where p is the fluid density. For time-harmonic ( this relation yields

p = - i&P 4 (9)

which for present purposes may be written

p = (10)

with a constant for a given frequency.

Substituting Equation (10) into Equ,tion (7) then gives

6 (11)

-L 6



or, since a # 0,

(12)
an c at

According to the analogy of Equation (3), Equation (12) in turn gives

au Dux 1 xan- cat (13)

Substituting Equation (5) into Equation (13) results in

F aUx 1 x
VeA c at (14)

or

eA IUx

F Ae (15)
x c at

Equation (15) indicates that the analog representation of the condition to be obtain-

ed at the assumed finite outer boundary of the exterior fluid (Equation (7)) is

achieved through use of scalar dashpots of constant P' A/c connected from the boundary

to ground, in agreement with the general form for boundary conditions derived by
2

Everstine. In particular, for the outer boundary modeled by finite elements, a

dashpot with the prescribed constant will be attached at each grid point to which

area A has been assigned.

IMPLEMENTING THE ANALOG FOR COMPUTING

With the basic ingredients of the structural analog described, there remains

only to make a computation using it. The problem selected for solution is to find

the scattered pressure generated on the surface of an infinite rigid cylinder of

radius a - 0.5 meter by a plane wave propagating in the negative x-direction

7



(Figure 3) and having a maximum fluid particle velocity D4 /Jx = V = - 1 in that

direction. The infinite cylinder was chosen because analytically derived solutions

3
are available for this case.

Because of the shell's rigidity, only the exterior field need be modeled with

finite elements. The presence of the shell is implicit in the shape of the interior

fluid boundary and the inner boundary condition generated by this shape.

. Consider now the details of setting up the finite-element model. As stated

previously (page 3), the analogy specifies that the fluid surrounding the structure

be modeled with two-dimensional plane stress elements having specially assigned

material properties. The NASTRAN computer program was selected as the solver for the

finite-element formulation, and the elements used to model the fluid are the CQDMEM

* elements. Since the structure-fluid interface is circular, it is convenient to use

a polar configuration of elements to model the fluid (Figure 4). Symmetry permits

Figure 4 - Finite-Element Model of External Fluid

modeling only the upper half-plane. A perspective view of a typical field element

is shown in Figure 5. The values for Young's modulus Ee, density p e and Poisson's

ratio v are computed from the expressions for material constantse

_1 8



THICKNESS

Figure 5 - Typical Membrane Element Used to Model Fluid

Ee e

V = 1/2 1 - (16)

Pe =e 1i (c = sound speed in fluid)

required to bring about the analogy for the two-dimensional case. In particular, the

shear modulus V e is taken as unity, and 6 is chosen small compared to unity but not
2

so small that 1+ is numerically indistinguishable from unity (e.g., 6=0-). An

arbitrary thickness of unity is assigned to the membrane element. The subscript "e"

signifies that these constants are artificial constants belonging to the elements

which model the fluid.

Figure 6 depicts the inner fluid boundary in perspective to illustrate the

discretization of the boundary surface and the application of the inner boundary

condition. The angle ct is determined by the spacing of elements around the cir-

cumference. Shaded areas of the two faces indicate the area A = 1/2 Area I + 1/2

Area2 assigned to the central grid point. Fx at each grid point has the value

indicated by Equation (6) with p e = 1, A is the area assigned to the grid point as

shown, and V the component of scattered velocity in the outward (into the fluid)
n

.t9



! 1/2 AREA2  12AREA?

F x UNIT THICKNESS

GRIDPOINT AREA7

Figure 6 - Discretized Inner Fluid Boundary

* direction normal to the structural surface. Vn (Figure 3) is easily determined by a

simple cosine projection of the incident velocity vector vx, which is assumed to be

unity, onto the outward unit normal to the surface. For ease of specifying the

* inner boundary load, NASTRAN's facility for handling frequency dependent loads is

used in the generalized form

(p(f) = fAB(f)ei [ (f)+O - 2 7fT ]} (17)

where f = frequency

0 = phase angle

T = time delay

Figure 7 shows that the delay between the times at which a plane wave traveling in

the negative x-direction intersects P1 and P 2 equals the time to travel the distance

d at speed c, so that T = a(l-cos 0)/c. If the incident wave is represented by

v(x,t) = V(x)ei(f(t - T) (V(x) is magnitude) (18)

10



vx~t

a P

Figure 7 -Diagram for Computing Time Delay

* then

Vn (x~t) =V(x) Cos 0 e- W e t(9

or, suppressing the time dependence,

v (x W V(x) cos e (20)

from which the applied force is

F = A v n(x)-A V(x) cos 0e-iWT (21)

For V(x) =1

F x -Acos 0 e-iWT (A= area) (22)



The last expression is nicely obtained from the generalized form (Equation (17)) by

taking B(f) E 1, with (f) = 0 and 0 = 0, and the constant term equal to -A cos 0.

Figure 8 illustrates the discretization of the outer boundary (artificial) and

application of the wave absorbing condition with dashpots. The dashpot constant at

each grid point is the area assigned to the grid point, A = 1/2 Area1 + 1/2 Area2 ,

divided by the sound speed c. NASTRAN's CDAMP2 cards are used to specify the

constants.

AY

x

OUTER BOUNDING SURFACE
OF FLUID

AREA 2  C =A/c
~1/2 AREA 2

S/12 
AREA

1  R A

11 | s-

U /-

Figure 8 - Discretized Outer Fluid Boundary



As previously noted (page 6) the effectiveness of a plane-wave-absorbing

boundary depends on its distance from the radiating (or scattering) surface. The

present work uses the guideline for placing exterior boundaries reported by A.J.
4

Kalinowski. According to this guideline, a plane wave absorbing boundary placed

1.5 wavelengths from the structural surface will absorb 99.7 percent of outgoing

waves, and a boundary placed one wavelength away will absorb 99.2 percent. This

guideline for two-dimensional applications is based on consideration of the distance

at which cylindrical waves spreading outward from an infinite line source may be
4

assumed to be nearly plane waves.
4

Another guideline considered in establishing the fluid model relates to

selection of element dimensions. With CQDMEM elements, the guideline recommends a

minimum length in the radial direction (Figure 4) of at least one-sixth wavelength.

For the first calculations of both rigid and elastic scattering, it was
6

convenient to use the automatic finite element modeling program GPRIME to generate

the CQDMEM meshes such as those shown in Figure 4. The particular submodule of

GPRIME involved is GGEN, which provides two-dimensional capabilities. To this

automatically generated portion of NASTRAN's BULK DATA were added constraint condi-

tions, inner and outer boundary condition data, and the incident wave frequency. In

accord with the analogy, all degrees of freedom except displacement in the x-direction

were constrained at every grid point in the fluid. With these data, NASTRAN sets up

and solves the matrix equation

[Q] {u} + [C] U} + [H] {U} = (f} (23)

where [Q] is the inertia matrix for the fluid

[C] is the symmetric damping matrix for the fluid which
arises from the radiation condition on the

artificial outer boundary

[H] is the "stiffness" matrix for the fluid

From the correspondence between displacement and potential (Equation (3)) and the

relation of acoustic pressure to potential (Equation (8)), the fluid pressure so-

lution can be recovered from the "displacement" or "velocity" computed by NASTRAN.

If displacement is selected, as was done here, pressure is obtained by

p =- iWo U (24)

13



Normalizing by pcVo, where V is an arbitrary reference velocity,

kI gives
pg= -ik U (25)

CALCULATIONS OF RIGID SCATTERING

Modeling of the fluid region for the rigid-body calculations proceeded by first

locating the boundary for the exterior fluid and then, based on the boundary location

criterion (page 13) estimating the frequencies of scattering that might reasonably

be handled with this boundary. The distance between shell surface and outer boundary

was chosen to be ~-0 m (actually 10.0889 m). The criterion suggests that a boundary

at this distance will be a good absorber if the distance is I or 1.5 wavelengths of

the scattered pressure. Since the wavelength X = 2T/k, where k = w/c, the boundary

distance was expected to be adequate for frequencies of 150 and 225 Hz, depending on

whether it represented -1 or 1.5 A.

A finite element mesh was generated for the region between shell and outer field

boundary consisting of 19 circumferential bands of 18 CQDMEM elements each. A
7

picture of this mesh obtained through use of the STAGING program is shown in Figure

9. A 150-Hz scattering calculation was run with this mesh and the calculated surface

pressures are seen in Figure 10 to be in excellent agreement with results from an

analytic formula3 which was implemented for automatic calculation in a special

purpose program SCATI.

To obtain results at 225 Hz comparable to those at 150 Hz, it was necessary to

increase the density of the finite element mesh. This was accomplished by sub-

dividing circumferential bands of elements beginning at the fourteenth band out from

the shell surface and extending to the outer boundary (Figure 11). Calculated

pressures are shown in Figure 12.

SCATTERING FROM AN EMPTY ELASTIC CYLINDER

STRUCTURAL ANALOG FOR FLUID-STRUCTURE INTER-
ACTION (SYMMETRIC POTENTIAL FORMULATION)

The analogy used for scattering calculations when the cylindrical shell is

allowed to deform is based on a finite element formulation 5 for coupled fluid-

structure interaction in which pressure is the single unknown at grid points in the

fluid,

14
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+ + (26)
-p AT  Q 0 C jT p f

where U is the vector of displacement components in the structure

p is the vector of pressures at fluid grid points

M is the structural mass matrix

K is the structural stiffness matrix

B is the symmetric damping matrix for the structure

p is the fluid mass density

A is the area matrix which converts fluid pressures at fluid-
structure interface grid points to structural loads, and

H, C, and Q are as previously defined (page 13)

The right-hand side represents the vectors f and f of known forces acting on the

structure and fluid, respectively. It is seen that, without the coupling term -oAT,

the matrix equation for p has exactly the form given on page 13 for the velocity

potential, reflecting the fact that both pressure and velocity potential satisfy the

wave equation for the field.

Although Equation (26) is amenable to solution by a general structural analysis

computer program such as NASTRAN, the present investigation uses a reformulation8 of

the problem which yields a symmetric matrix system. The symmetrization process

proceeds as follows: dividing the second partition of Equation (26) by -1/p and

integrating the resulting equations in time yields[: j{ : + L: 0QP {24 + L A U {; [: 0 t}
f I

(27)

t
1 l" [2dt

-f 2
0

19
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Introducing a new unknown vector"

t

f pdt (28)

0

from which

q= p (29)

and

q = p (30)

and substituting into Equation (27) gives the following system of equations which,

in the literature, 8 is referred to as the "symmetric potential formulation,"

+ + 4 (31)
o _Q/P A T _C/ -H/ q 92

where

t

2 p f [2 dt
0

The terminology "symmetric potential formulation" arises from the fact that q

(Equation (29)) differs from the velocity potential (Equation (8)) by only the

constant multiplier p.

Consideration is next given to the form that Equation (31) takes for elastic
3

scattering. To derive this form it is convenient to begin with the expression for

the total pressure scattered from an elastic body ensonified by an incident plane

wave of pressure p,,

20



Pt = Pi + p se (32)

where p se is pressure scattered by an elastic boundary. pse is then represented 3 as

the sum

Pse = PsM + pr (33)

where pSo is pressure scattered by the rigid surface and pr is the pressure radiated

from elastic motion of the shell. Then by substitution of Equation (33) into

Equation (32),

pt = Pi + Ps + Pr (34)

" •Since Equation (34) is the pressure at the interface between structure and fluid,

the resultant forces against the shell surface at grid points of a finite element

model are

F -A (p +p) A -A p -A se (35)

where A is the matrix of areas associated with grid points.

The force acting on the inner fluid boundary is obtained from the boundary condition

2E = - U (36)
an n

where U is the normal component of shell displacement.n

Substituting Equation (34) for total pressure gives

aPt @Pi + Ps pPr p (
n n +n (37)

from which
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__Ps_ Pr "" 1~i n + n = -pUn - 3n 
(38)

or

P se "" Pi

n = -
P U n -- (39)n n

Substituting

n P p (40)

where v i  denotes the normal component of the incident wave's particle velocity,
n

into Equation (39) gives

aPse "(U (41)
n n- )

n

In the analogy (pages 5-6), enforcement of a normal derivative condition on the

scalar field variable at the structural surface is accomplished by application of a
particular "load" against the inner surface boundary of the fluid. The condition

described by Equation (41) is then obtained by imposing the load

F2 = 1e Ap- n -i A -n -v ) (42)
n n

*at grid points of the finite element model, with A a matrix of areas (of the fluid

inner boundary surface) associated with the grid points, and vi the normal component

n
of particle velocity in the incident wave. Performing the integration of F2 required

i" by the symmetry formulation yields

t

G- -- dt -AU + Av (43)-2 f 2
=  

-n i
0n
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and substituting p se = se in Equation (35) yields

-sse (44)

The unknown components - A U and - A q in the fluid and shell loadings are moved
- ~n - se

to the left side of Equation (31) giving, respectively, the upper right and lower

left partitions of the second, or damping, matrix. With the replacement of pi by

-pcvi (from the relationship between pressure and velocity in a plane wave propa-
X

gating in the negative x-direction) the known components of G 2 and F become the

right-hand side of Equation (31)

A P A v, (45)
x

2 =A v. =A v. cos e (46)
n x

thus completing the symmetric formulation for plane wave scattering.

IMPLEMENTING THE SYMMETRIC POTENTIAL FORMULATION

Performing elastic scattering calculations with the formulation just described

requires the following steps:

a. Construction of finite element models of the cylinder and its applied

loads, and of the fluid with its applied loads and outer boundary conditions, and

b. Connection of the two models at their interface.

The details of these steps are outlined in this section.

A. Finite Element Models of Cylinder and Fluid

As a basis for discretizing the cylinder, a set of grid points is established

around the upper half-plane circumference and these points are connected in pairs by

bar elements (NASTRAN CBAR cards), Figure 13. Since only an arbitrary "slice" of

the infinite cylinder is being modeled, the bar elements are assigned an arbitrary

depth of 1 m. Since the cylinder is a real structure as opposed to the analog

structure which represents the fluid, the cylinder's elements have the actual

properties of its material. For this work, it was assumed that the cylinder is

23

L i...... ......



*79

CDMEM
ELEENTS

CBAR
"' '"" 4 ELEMENTS

Figure 13 - Finite-Element Model of Structure-Fluid Interface

for Submerged Empty Cylinder

steel, that it is 0.01 m thick (which makes it a "thin" shell), and that it has the

following material properties:
9

density ps = 7700 kg/m
3

Young's modulus Es = 19.5 x 1010 newtons/m2 (47)

Poisson's ratio V = 0.28
s

For use in the calculations these properties must in turn be converted to their

corresponding effective values for plane strain,

E

* E Splane stress 2.116 x 1011
Splane strain 1-V 2

splane stress
(48)

- Vplane stress =.38889
Splane strain plane stress
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These values of E and V along with thickness and ps, are the data supplied on theS S

property card for the CBAR elements.

The fluid finite element model is, as for rigid scattering, an assemblage of

membrane elements such as the one shown in Figure 5. However, the material property

constants for the elements must be altered to account for the division by -p required

for the symmetric formulation (Equation (31)). Thus, the following constants, given

in Figure 5 are transformed to

E 
10-5

e p

e 2(49)
pc

Pe p

9 3
where p is the actual density of seawater and has the value9 1026 kg/m. The dash-

pot constants (partition C in Equation (31)) on the outer boundary are also affected

by the transformation, and their previous values of A/c (page 12) are replaced by

-A/pc.

Equation (45) gives the load acting against the cylinder surface as simply

-pcA, when vi = - 1. Comparing Equation (46) with Equation (6) shows that the load
x

acting against the fluid surface is the same as that prescribed for rigid scattering.

B. Interface Connection of Cylinder and Fluid Models

Although the cylinder grid points and fluid inner boundary grid points are

shown in Figure 13 to be spatially separated, they are actually coincident grid

points in the model. The two sets do not have the same numbers. It is convenient

for subsequent grid point resequencing by BANDIT1 0 to tie such coincident points

together with zero-stiffness springs so that BANDIT, which does not read the DMIG

cards used, will see the structure and fluid models as connected. The actual

coupling of the two models is accomplished by setting up the A and AT partitions of

the second matrix in Equation (31). The assignment of area to grid points has
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already been shown in Figure 6 for the inner fluid boundary. The same manner of

assignment is used for the cylindrical surface model which exactly matches that for

the fluid, with the result that each of a pair of coincident grid points is assigned

the same size area. Equations (43) and (44) -how that the area associated with the

structural grid point of a coincident pair multiplies only the normal component of

the point's motion, whereas the area associated with the fluid point of the pair

multiplies the single scalar degree of freedom associated with the fluid point.

NASTRAN's DMIG cards are used to specify, in terms of grid point numbers and

component numbers, the locations (i,j) for inserting corresponding areas directly

into the damping matrix.

To run the symmetric formulation, a special option, SYSTEM (77) = - 1, must be

specified on the NASTRAN card. This option, which is available only with the

Center's version of NASTRAN, allows the use of negative values for E and ee

(Equation (49)).

CALCULATIONS OF ELASTIC SCATTERING

The fluid mesh (Figure 11) for the 225-Hz rigid scattering run was used as a

basis for the first elastic scattering calculation at the same frequency. The

material properties of the membrane elements and dashpot constants on the outer

boundary were divided by - p, and the inner boundary grid points were used to define

the modeling of the cylinder; i.e., the surface between 0 and 180 deg was subdivided

into grid points 10 deg apart which were then connected by 18 bar elements.

Velocity output was requested from the NASTRAN run, since it is this quantity

at fluid grid points that is analogous to pressure, as indicated in Equation (29).

Computed pressures at the cylinder surface are compared (Figure 14) with results ob-

tained from an analytic formulation3 coded by the author in a special purpose program

SCAT2. In the range 0 to 90 deg the numerical result differs from the analytic by

essentially a constant, about 6 percent. The results obtained with this fluid mesh

for rigid scattering (Figure 12) strongly indicate that for some reason thl, mesh

may n-t perform equally well for rigid and elastic scattering. This possibility was

confirmed by increasing the radial density of elements in the fluid mesh (Figure 15)

and recalculating. The results (Figure 16) deviate from the analytic curve by about

3 percent.
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Although reasonably good results were obtained thus far, the results were for

frequencies far below the intended range of interest, 1 to 20 kc. It was, therefore,

essential for the ultimate usefulness of the metbod to gain some insight into its

performance at the higher frequencies.

Before the results obtained at higher frequencies are summarized, a description

is offered of the modeling strategy and some software developed to assist in

generating the fluid-structure models for these frequencies.

When the structure is modeled, it is very helpful to have some idea of its

natural frequencies and modes, since the modeling of the structural surface should

be sufficient to resolve modes that dominate its response. Although This information

is not generally known for submerged bodies of arbitrary shape, it is known approxi-

mately for infinite hollow thin cylinders. The particular formulation used here is
3

from Feit and Junger [Equation (10.31), page 272] and provides, for any mode number

n > 0, an estimate of the submerged natural frequency. The mode designator n counts

the number of full sine waves (radial or transverse motion) around the circumference

of the cylinder. If it is assumed that eight grid points per full sine wave are

adequate to reproduce the wave, an initial estimate of n/2 x 8 (n even) or (n/2 + 1)

x 8 (n odd) equally spaced grid points is obtained for the cylinder model at the

corresponding natural frequency.

As previously noted (page 13) for the earlier calculations at low frequencies,
6the facilities of GPRIME were used to generate automatically the fluid mesh to

which were added manually the structural model, interface loadings, and fluid outer

boundary condition. The updating was necessary because loading, damping, and "DMIG"

data are not generated by GPRIME. At low frequencies the updating was no real

problem, since relatively few (< 20) elements were needed to represent the boundary

surfaces. In the higher frequency ranges, however, elements at the interface

boundaries can easily number in the hundred , making manual updating tedious.

Therefore, a special purpose generator GEN was developed which produces, except for

a few cards, the entire bulk data deck required for the NASTRAN run. The generator

also provides for modeling transition zones in the fluid mesh, which facilitates

reduction of elements in the circumferential direction between the structural and

fluid models.

Figures 17-25 summarize the final results from three sets of calculations in the

frequency range of interest. The results shown in each case except the last are
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those obtained from several refinements of an initial fluid-structure mesh, three

in the first case, two in the second, and one in the last.

Although generally very good convergence to analytic results was obtained for

2100 Hz and 4100 Hz, the numerical solution at 6600 Hz shows less tendency toward

overall agreement. The region of most significant disagreement is specifically

confined to the un-illumined surface. Relative error incurred in the surface

pressures in this region ranged to 14.2 percent. Several factors may have con-

tributed to this deterioration in accuracy. One possible factor is the closeness of

the wave absorbing boundary to the cylindrical surface, 0.34 m in this case.
4

According to Kalinowski, plane wave absorption cannot be used when the largest

dimension of the absorbing boundary is only slightly larger than the corresponding

dimension of the body enclosed. Although the diameter of the absorbing boundary

(1.6 m) would seem to be more than slightly larger than the cylinder diameter (1 m),

the solition may still be subject, because of the closeness, to effects of reflected

residuals of the outgoing waves that are not absorbed. Another possible factor is

the way the finite-element mesh for the cylinder was set up. For the 6600-Hz run,

the initial subdivisioning of the cylinder was not done according to the strategy

outlined on page 30. The intent of this run was, rather, to determine whether an

adequate mesh at the higher frequency could be obtained by first "squashing" inward

the initial mesh for 4100 Hz until the outer boundary was 1.5 wavelengths of the

higher frequency, and then, using the squashed-down initial mesh, refining to the

total number of fluid elements which gave the 4100-Hz results (Figure 22). Thus,

the shell model at 6600 Hz had the same number of elements (128) as it did at 4100

Hz. The original modeling strategy, on the other hand, would have suggested that it

have (40/2 x 8) = 160 elements as the beginning base. The rather sharp increase in

complexity of the normal surface velocity profile in the region 90-270 deg (Figures

21 and 24) indicates that at 6600 Hz the shell was somewhat undermodeled.

SCATTERING FROM SUBMERGED CONCENTRIC AND ECCENTRIC CYLINDER

SYSTEMS WITH CONTAINED FLUID

Figure 26 sketches the physical problem being considered. When the analog

formulation is extended to this type of application, it is useful to summarize the

physics 3 involved. With fluid inside the outer cylinder, flexing of the cylinder

wall in response to the excitation wave initiates pressure waves which propagate
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Figure 26 - Submerged Concentric Cylinders with Contained Fluid
Ensonified by Plane Wave

inward until they encounter the inner cylinder wall, which in turn sends scattered

waves back. In other words, flexing of the outer and inner cylinders results in two

pressure wave trains in the enclosed fluid, one travelling inward, the other trav-

elling outward from the center. The two waves combine at any point in the interior

fluid to give the total pressure. In particular this pressure, designated pinterior'

exists at the juncture of cylinder wall and fluid.

The analog formulation for exterior scatterirg is augmented to account for the

presence of inner fluid and inner cylinder by (1) incorporating the equations of

motion of the inner fluid, (2) accounting for the interior fluid pressure against

the cylinder, and (3) including the two boundary conditions on the inner fluid. The

first step is accomplished by modeling the interior fluid with finite elemcnts.

The second step is accomplished by noting that the force of a positive interior

pressure at the cylinder, has the opposite sign from the force of a positive exterior
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scattered pressure. Hence the total forces acting at a shell grid point are (see

Equation (35))

F=p +A (50)
.1 -i - se +--interior

Since pinterior is unknown, the third term joins the second in moving to the left-

hand side of an augmented Equation (31), and the right-hand side (Equation (45))

remains as before. Lastly, boundary conditions on the fluid are considered. The

outer boundary condition is

apinterior

Dn = - U (51)

which as before (page 22) is obtained by specifying a force

F3 = -i Ap U = - Ap U (52)

which, under the transformation required for symmetry, yields

t

ip f 3 dt = A (53)

0

In the same manner the force on the inner boundary is

!inner A inner P n  (54)

boundary boundary

where w denotes radial displacement of the inner cylinJ ,r surface (or, equivalently,

the adjacent fluid particles since continuity is assumed) and thus

Sinner A inner n (55)

boundary boundary
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For the computations made here, the inner cylinder was assumed to be rigid, so that

inner = 0 because total velocity is zero at a rigid surface, making no con-

boundary
tribution to g3 "

The introduction of interior fluid and structure results in an augmented version

of Equation (31)

0 -Q e/ I + AT -Ce/ e

0 0 -Qi / P -A 'T 0 -Ci / p qi

+ 0 -H/p f = 2 (56)

V.e 0 o -Hi/ p Io

in which subscripts i and e denote interior and exterior, respectively, and qi=

Finterior"

To implement this formulation, the interface between the cylindrical shell and

adjacent fluids is modeled as shown in Figure 27. The shell interface with the

interior fluid is handled in the same manner as that with the exterior fluid. A new

set of grid points is introduced to represent the interface boundary of the interior

fluid, these points being coincident with the respective shell grid points, and zero-

valued spring connections are used as before to aid the resequencing algorithm (see

page 25). Because of the spatial coincidence of the shell grid points with adjacent

exterior and interior fluid grid points, the surface area (Figure 6) assigned each

structural grid point is also assigned to its neighboring fluid grid points. Area
T T

components of the coupling partitions (A ,A,-A ,-A) of the damping matrix in

Equation (56) are inserted, as before, with "DMIG" cards (see page 26), taking care

that areas associated with the inner fluid coupling are given a negative sign.
Calculations were made for two cases: 1) the interior cylinder concentric with

the outer one, and 2) the interior cylinder offset from the center of the outer one.
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Figure 27 - Finite-Element Model of Cylindrical Shell Interface
with Exterior and Interior Fluids

Since at the time of calculation no analytic or other results were at hand for

checking, efforts were made to build into the model some level of confidence from

results achieved in previous runs. To this end, the exterior fluid and structural

model from the 2100 Hertz calculation (Figure 17) was used again for the outer fluid,

and the interior fluid was modeled with a mesh of somewhat higher density than that

of the outer fluid. The combined total mesh is shown in Figure 28. Figure 29 com-

pares scattered pressures calculated on the surface of the outer cylinder with the

previous results (Figure 19) for the same cylinder when it was empty.

For the second calculation, the interior cylinder was shifted 0.03 m from the

center of the outer circle. Figure 30 shows the mesh for this run and Figure 31

compares the results with the concentric case.

These two calculations suggest one of the major benefits from the method of

structural analogies: the method may permit one to take advantage of the considerable

versatility and variety of application inherent in some of the general purpose

structural analysis programs available for solving finite element formulations.
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SUMMARY

Our experiences in applying a structural analog method to plane-wave 2-D scat-

tering can be summarized as follows:

1. Computations have been made thus for only at frequencies in the lower

portions (2kc to ~7kc) of the range (lkc - 20kc) considered relevant to this project.

2. When both structure and fluid were adequately represented in the finite

element model, computed structural surface pressures were in excellent agreement with

available analytic results.

3. Problem size, which for our applications was governed primarily by the

number of finite elements required to model the fluid, increased significantly as

frequency increased, despite the fact that the fluid outer boundary moved closer to

the structural surface, i.e., less fluid was being modeled.

4. The method, implemented through NASTRAN, is capable of handling applications

involving arbitrary structural shapes and structure-fluid configurations.

PROJECTED FUTURE DEVELOPMENT

It is anticipated that future developmental efforts associated with the struc-

tural analog approach will be directed toward

1. Assessing performance of plane wave absorption at higher frequencies than

have so far been computed.

2. Assessing the merits of a "high frequency" version of the structural analog

formulation in which the exterior fluid is discarded from the model.

3. Developing interfaces between computed output from the finite-element model

(structural surface pressures and velocities) and algorithms which can use these

data to compute pressures at field points outside the finite element model.

4. Increasing our store of analytic and/or experimental results for use in

verifying numerical results.
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